skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Townsend, Philip A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding ecosystem processes on our rapidly changing planet requires integration across spatial, temporal, and biological scales. We propose that spectral biology, using tools that enable near‐ to far‐range sensing by capturing the interaction of energy with matter across domains of the electromagnetic spectrum, will increasingly enable ecological insights across scales from cells to continents. Here, we focus on advances using spectroscopy in the visible to short‐wave infrared, chlorophyll fluorescence‐detecting systems, and optical laser scanning (light detection and ranging, LiDAR) to introduce the topic and special feature. Remote sensing using these tools, in conjunction with in situ measurements, can powerfully capture ecological and evolutionary processes in changing environments. These tools are amenable to capturing variation in life processes across biological scales that span physiological, evolutionary, and macroecological hierarchies. We point out key areas of spectral biology with high potential to advance understanding and monitoring of ecological processes across scales—particularly at large spatial extents—in the face of rapid global change. These include: the detection of plant and ecosystem composition, diversity, structure, and function as well as their relationships; detection of the causes and consequences of environmental stress, including disease and drought, for ecosystems; and detection of change through time in ecosystems over large spatial extents to discern variation in and mechanisms underlying their resistance, recovery, and resilience in the face of disturbance. We discuss opportunities for spectral biology to discover previously unseen variation and novel processes and to prepare the field of ecology for novel computational tools on the horizon with vast new capabilities for monitoring the ecology of our changing planet. 
    more » « less
  2. Abstract Anthropogenic climate change, particularly changes in temperature and precipitation, affects plants in multiple ways. Because plants respond dynamically to stress and acclimate to changes in growing conditions, diagnosing quantitative plant‐environment relationships is a major challenge. One approach to this problem is to quantify leaf responses using spectral reflectance, which provides rapid, inexpensive, and nondestructive measurements that capture a wealth of information about genotype as well as phenotypic responses to the environment. However, it is unclear how warming and drought affect spectra. To address this gap, we used an open‐air field experiment that manipulates temperature and rainfall in 36 plots at two sites in the boreal‐temperate ecotone of northern Minnesota, USA. We collected leaf spectral reflectance (400–2400 nm) at the peak of the growing season for three consecutive years on juveniles (two to six years old) of five tree species planted within the experiment. We hypothesized that these mid‐season measurements of spectral reflectance capture a snapshot of the leaf phenotype encompassing a suite of physiological, structural, and biochemical responses to both long‐ and short‐time scale environmental conditions. We show that the imprint of environmental conditions experienced by plants hours to weeks before spectral measurements is linked to regions in the spectrum associated with stress, namely the water absorption regions of the near‐infrared and short‐wave infrared. In contrast, the environmental conditions plants experience during leaf development leave lasting imprints on the spectral profiles of leaves, attributable to leaf structure and chemistry (e.g., pigment content and associated ratios). Our analyses show that after accounting for baseline species spectral differences, spectral responses to the environment do not differ among the species. This suggests that building a general framework for understanding forest responses to climate change through spectral metrics may be possible, likely having broader implications if the common responses among species detected here represent a widespread phenomenon. Consequently, these results demonstrate that examining the entire spectrum of leaf reflectance for environmental imprints in contrast to single features (e.g., indices and traits) improves inferences about plant‐environment relationships, which is particularly important in times of unprecedented climate change. 
    more » « less
  3. Summary Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P‐use strategies across diverse plant communities.We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL; nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests. Then, we developed trait‐based models and spectral models for leaf P fractions and compared their predictive abilities.We found that plants exhibiting conservative strategies increased the proportions of PNand PM, but decreased the proportions of Piand PL, thus enhancing photosynthetic P‐use efficiency, especially under P limitation. Spectral models outperformed trait‐based models in predicting cross‐site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74) or proportions (R2 = 0.43–0.70 vs 0.06–0.45).These findings enhance our understanding of leaf P‐allocation strategies and highlight reflectance spectroscopy as a promising alternative for characterizing large‐scale leaf P fractions and plant P‐use strategies, which could ultimately improve the physiological representation of the plant P cycle in land surface models. 
    more » « less
  4. Chlorophyll fluorescence is a well-established method to estimate chlorophyll content in leaves. A popular fluorescence-based meter, the Opti-Sciences CCM-300 Chlorophyll Content Meter (CCM-300), utilizes the fluorescence ratio F735/F700 and equations derived from experiments using broadleaf species to provide a direct, rapid estimate of chlorophyll content used for many applications. We sought to quantify the performance of the CCM-300 relative to more intensive methods, both across plant functional types and years of use. We linked CCM-300 measurements of broadleaf, conifer, and graminoid samples in 2018 and 2019 to high-performance liquid chromatography (HPLC) and/or spectrophotometric (Spec) analysis of the same leaves. We observed a significant difference between the CCM-300 and HPLC/Spec, but not between HPLC and Spec. In comparison to HPLC, the CCM-300 performed better for broadleaves (r = 0.55, RMSE = 154.76) than conifers (r = 0.52, RMSE = 171.16) and graminoids (r = 0.32, RMSE = 127.12). We observed a slight deterioration in meter performance between years, potentially due to meter calibration. Our results show that the CCM-300 is reliable to demonstrate coarse variations in chlorophyll but may be limited for cross-plant functional type studies and comparisons across years. 
    more » « less
  5. Abstract Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree‐years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within‐species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental‐scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales. 
    more » « less
  6. Abstract Plant trait data are used to quantify how plants respond to environmental factors and can act as indicators of ecosystem function. Measured trait values are influenced by genetics, trade‐offs, competition, environmental conditions, and phenology. These interacting effects on traits are poorly characterized across taxa, and for many traits, measurement protocols are not standardized. As a result, ancillary information about growth and measurement conditions can be highly variable, requiring a flexible data structure. In 2007, the TRY initiative was founded as an integrated database of plant trait data, including ancillary attributes relevant to understanding and interpreting the trait values. The TRY database now integrates around 700 original and collective datasets and has become a central resource of plant trait data. These data are provided in a generic long‐table format, where a unique identifier links different trait records and ancillary data measured on the same entity. Due to the high number of trait records, plant taxa, and types of traits and ancillary data released from the TRY database, data preprocessing is necessary but not straightforward. Here, we present the ‘rtry’ R package, specifically designed to support plant trait data exploration and filtering. By integrating a subset of existing R functions essential for preprocessing, ‘rtry’ avoids the need for users to navigate the extensive R ecosystem and provides the functions under a consistent syntax. ‘rtry’ is therefore easy to use even for beginners in R. Notably, ‘rtry’ does not support data retrieval or analysis; rather, it focuses on the preprocessing tasks to optimize data quality. While ‘rtry’ primarily targets TRY data, its utility extends to data from other sources, such as the National Ecological Observatory Network (NEON). The ‘rtry’ package is available on the Comprehensive R Archive Network (CRAN;https://cran.r‐project.org/package=rtry) and the GitHub Wiki (https://github.com/MPI‐BGC‐Functional‐Biogeography/rtry/wiki) along with comprehensive documentation and vignettes describing detailed data preprocessing workflows. 
    more » « less